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This paper presents evolution of super-Gaussian optical pulses to bell-shaped dissipative solitons in a lossy, cubic-quintic 
nonlinear (parabolic law) fiber in presence of bandwidth limited amplification. Lagrangian and Rayleigh dissipative function 
based variational principle leads to a set of evolution equations of individual pulse parameters that determine the condition 
of stable dissipative soliton pulse propagation. After some initial fluctuations, a flat-top pulse transforms its profile to a bell-
shaped one and start propagating in a stable manner. In support of this analytical result, numerical investigations are 
performed using split-step Fourier method. In this case too, super-Gaussian pulses undergo an initial transition stage before 
achieving stable bell-shaped solitonic state. Dissipative solitons, thus generated, are found to be robust. This work provides 
the theoretical backup to experimental procedures of obtaining fundamental soliton from arbitrary pulse using a nonlinear 
optical fiber. 
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1. Introduction 

 

Optical pulse propagation through nonlinear 

dispersive media, particularly optical fiber, and 

eventually the generation of temporal soliton has been at 

the centre of research interest since its theoretical 

prediction in 1973 by Hasegawa and Tappert [1]. The 

interest intensifies after the experimental verification in 

1980 by Mollenauer et al. [2]. Temporal soliton is a 

pulse that preserves its shape and size during 

propagation. The underlying mechanism is the balancing 

between linear and nonlinear phenomena. More 

particularly, the group velocity dispersion (GVD) 

induced pulse broadening can be arrested by the 

nonlinearity induced self-phase modulation (SPM) [3]. 

Temporal soliton, thus generated, has enormous 

importance in telecommunications, data processing and 

all-optical devices. In the theoretical study the use of 

bell-shaped soliton profiles is very common. Among the 

bell-shaped profiles, either hyperbolic secant (sech) or 

Gaussian profiles are preferred. It is logical as the sech 

profile is the exact solution of the cubic nonlinear 

Schrödinger equation (NLSE) that governs the pulse 

propagation through nonlinear dispersive media [4]. The 

Gaussian profile, which is  shape wise very close to the 

sech one, is favourable in many cases as it simplifies the 

mathematical analysis without much hampering the 

underlying physics of the system [5]. Also Gaussian pulse 

gets less influenced by initial chirp in comparison to sech 

pulse [6]. Apart from these bell-shaped profiles stable 

temporal soliton has been found with sinh-Gaussian and 

cosh–Gaussian pulses [7]. Both the pulses have central deep 

that varies with sinh/ cosh factor. Flat-top pulses are another 

candidate profile studied in context of temporal soliton in 

optical fiber [8]. For example, super-Gaussian pulses show 

stable propagation in an optical fiber [9]. Pulses from 

directly modulated laser diodes, commonly used in optical 

fiber communication systems, are far from Gaussian profile. 

Rather the temporal profile is near-rectangular with steeper 

edges [10].  Super-Gaussian profile can be suitably assumed 

for portraying those pulses [11]. The high steepness at the 

pulse edges significantly modifies SPM, which makes the 

soliton formation interesting. Apart from the fundamental 

interest due to their shape these pulses are significant as they 

can extract more power from the cavity. Super-Gaussian 

shape is otherwise beneficial as it is less affected by initial 

linear chirp than Gaussian pulse. Also at higher order with 

smaller width super-Gaussian pulse can reduce the 

detrimental effect of timing jitter and bit error rate [12]. The 

propagation and compression of a broad-band pulse in a 

chirped-pulse-amplification laser is studied using Super-

Gaussian profile [13]. The flat-top nature made super-
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Gaussian pulses versatile and suitable for use, e.g., high-

energy ion acceleration. The proton acceleration in the 

interaction of a tightly focused pulse with ultrathin 

double-layer solid targets in the regime of directed 

Coulomb explosion significantly increases using super-

Gaussian pulses [14]. These pulses have been used in the 

study of long-range self-channelling of infrared laser 

pulses in air [15]. To get a better insight into the 

mechanism preventing long-range beam collapse, 

numerical simulations were performed considering a 

super-Gaussian beam profile that matches with the 

experimental beam.  Alongside of Gaussian profile 

super-Gaussian profile has been employed in designing 

optical devices and systems. For instance, it has been 

used to find optimal pump profiles to improve the delay 

performance of tunable, broadband, slow-light pulse 

delay devices based on stimulated Brillouin scattering 

[16]. Super-Gaussian profile is often sought after as an 

approximation of square / rectangular pulse profiles. It 

has been considered in place of commonly used square 

pulses in non-return-to-zero systems in designing fiber 

grating filters in dense wavelength-division multiplexed 

systems. [17]. 

The nonlinear propagation of super-Gaussian pulse 

mostly studied in Kerr media. In optical fiber Kerr 

/cubic nonlinearity is the most prominent nonlinearity. 

At moderately higher intensity in semiconductor doped 

fiber nonlinearity gets modified. This can be modelled 

by adding quintic term with cubic (Kerr) nonlinearity.  

Although its value is very small in comparison to Kerr 

one, it significantly modifies pulse propagation, self-

focusing, soliton condition and other related optical 

phenomena. Also quintic nonlinearity initiates some 

optical phenomena which are absent in solely cubic 

nonlinearity environment [18-20].  

The theoretical investigation on the propagation of 

super-Gaussian optical pulses is carried by both 

numerically and analytically. A direct numerical 

simulation shows that super-Gaussian profile turns to 

two-peak and, finally, to single-peak while propagating 

through a dispersive single mode fiber [21]. Also, the 

peak intensity increases initially and then decreases 

monotonically after reaching a maximum. However, this 

decay can be arrested in nonlinear media, which will be 

demonstrated in the current communication. Using 

Runge-Kutta method it has been shown that pulse width 

and frequency chirp oscillate with the increasing 

distance if normalized coefficient of the second-order 

dispersion is appropriate and initial chirp is sufficiently 

small [22]. Also frequency-jitter and phase increases 

with propagation. The condition of conformal 

transmission of super-Gaussian pulse in optical fibers 

has been derived. Attempt has been made to achieve 

Super-Gaussian solitons in dispersion-managed optical 

fibers with perturbation using variational method [23]. 

However, it only presents the evolution equations (that 

are too in implicit form) of the pulse parameters during 

propagation. There is scope of further analysis of those 

equations, which essentially gives better insight about 

the pulse dynamics in the perturbed system. Using 

variational method solitons of super- Gaussian shape have 

been found in semiconductor doped glass fibers that possess 

cubic-quintic nonlinearity. Stability analysis proved that 

these solitons are dynamically stable and robust against 

small perturbation [24]. Also super-Gaussian shaped 

dispersion-managed solitons in polarization preserving 

optical fibers are obtained. In this study cubic nonlinearity is 

considered in conjugation with both local and non-local 

perturbation terms [25].   

A real time optical fiber will be always associated with 

some loss, whatever small it is. To compensate the loss, a 

suitable gain is essential. Only when GVD-SPM and gain-

loss balances are achieved a soliton can be formed. Such 

soliton is called as dissipative soliton due to the dissipative 

nature of the host system. In this communication we present 

super-Gaussian pulse propagation and subsequent evolution 

as a bell-shape dissipative soliton in a lossy optical fiber 

having cubic-quintic (parabolic law) nonlinearity. To 

provide the continuous supply of gain to the lossy system we 

use bandwidth limited amplification. For this a frequency- 

selective optical feedback is coupled with the fiber. An 

experimentalist’s way to obtain a fundamental soliton of 

sech shape from an arbitrary pulse is to let the arbitrary pulse 

transmit through a nonlinear optical fiber. In the due course 

after radiating excess energy and balancing of dispersion-

nonlinearity phenomena the fundamental soliton emerges. 

Present communication aims to provide the theoretical 

support of such experiments in a real time, lossy, nonlinear 

fiber.   

The arrangement of this paper is as follows: the 

mathematical model, which is a perturbed nonlinear 

Schrödinger equation, is described in section 2. The 

evolution equations of the pulse parameters are obtained by 

perturbative variational method.  Result of analytical method 

and the condition for dissipative soliton formation is 

discussed in section 3. Also, the variationally obtained 

solitons are validated by the direct numerical simulation 

based on split step Fourier transformation (SSFT). A brief 

conclusion is presented in section 4. 

 

 

2. Mathematical model 
 

To study the propagation dynamics of the super-

Gaussian pulse in a lossy optical fiber with cubic-quintic 

(parabolic law) nonlinearity and bandwidth limited 

amplification (by means of frequency-selective feedback) 

we consider the following cubic-quintic nonlinear 

Schrödinger equation (CQNLSE): 
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where, z is normalized distance of propagation, T is 

retarded time, )(zU  is the slowly varying envelope of the 

electric field of the pulse, )(zd  is the dispersion. In eq.(1) 
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the first term represents the evolution of the pulse field 

with respect to z , second one is the GVD term, while 

the third and forth terms are the contribution due to 

cubic and quintic nonlinearity respectively.   measures 

the strength of quintic nonlinearity relative to cubic one, 

thus have very small value. We consider negative value 

of  , which means the quintic nonlinearity is of 

defocusing nature. This combination of positive 

(focusing) cubic and negative quintic (defocusing) 

nonlinearity is a kind of competing nonlinearity that 

promises intriguing pulse dynamics. The lossy nature of 

the system is represented by the loss coefficient  , 0g  

is the  coefficient of gain supplied in the system by 

optical frequency-selective feedback. Frequency- 

selection is done by the help of a filter of strength   

that yields the last term [26].  The two terms together on 

the right hand side of (1) is known as bandwidth limited 

amplification. Eq.(1) can be rewritten as a perturbed 

CQNLSE of following form: 
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The right hand side of eq.(1) represents 

perturbation in the fiber, with 
2

2
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2)( 0   g  measures the excess gain that can 

further compensate the detrimental effect of the filter. A 

number of analytical methods have been developed for 

decades to solve NLSE. The most successful methods 

are inverse scattering method, Lax pair method, AKNS 

method, Fourier series method, Bäcklund transformation 

method, Darboux transformations technique and Green 

function technique. The objective of these methods is to 

check the integrability and subsequently find the exact 

solution of the system. Indeed presence of perturbation 

in NLSE more accurately describes the pulse dynamics 

in a real fiber but invites complexity in solving the 

problem as well. Solving eq. (1) by the aforesaid ‘exact’ 

analytical methods is difficult as this type of perturbed 

NLSE are in general non-integrable. In fact, equation (1) 

with dissipative perturbation terms that render any 

nonlinear evolution is non-integrable. There are several 

algorithms that are applicable if the perturbation terms 

are Hamiltonian. They are ansatz approach, semi-inverse 

variational principle. These have been successfully 

applied in the past [27-33]. Additionally, multiple-scale 

perturbation technique has been successfully applied to 

secure approximate soliton solution to the perturbed 

system. Another means to address such perturbed system 

where the perturbation terms are non-Hamiltionian is the 

variational principle [34, 35], as being studied in this 

paper. It must be noted that this principle does not yield 

a solution to the governing equation. It only retrieves 

dynamical system to the parameters of the soliton in 

presence of perturbation terms.  

For non-integrable models, approximate analytical 

methods are in rescue. We adopt Lagrangian based 

variational method in conjugation with Rayleigh dissipative 

function to find the evolution of the pulse parameters with 

propagation distance [26, 36]. Also, it should be noted that 

we are not searching the standard soliton solution of 

fundamental or higher order, rather investigating the 

propagation behaviour and checking the possibility of 

generating soliton from a given form (here, super-Gaussian) 

of pulse. The freedom of choosing ansatz other than the 

exact one is the indispensable reason to select variational 

method. Although approximate, this method is a very strong 

and useful toll to predict the nonlinear dynamics of pulse 

and beam even in perturbed environment [26]. To start with 

we first consider the unperturbed part of eq.(2), i.e.,  
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The Lagrangian density for this part reads as      
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At this point it is necessary to introduce a trial function, 

which is the pulse profile under investigation [37]. For the 

conservative CQNLSE (eq. 3) we neither consider the exact 

soliton ansatz of the pioneering paper by Pushkarov et.al. 

[38] nor the ‘inverse cosh’ type variational ansatz by de 

Angelis [34]. Since our aim is to study the propagation 

dynamics and to test the possibility of getting soliton 

(whatever the shape is) from a super-Gaussian pulse, we 

consider the following form of super-Gaussian trial function: 
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Here, )(zA  represent the pulse amplitude, )(zP  is 

the inverse pulse width, )(0 zT  is the pulse centre and )(zc  

is the chirp. )(zk  and )(z  respectively capture the 

nonlinear frequency shift and phase of the soliton pulse. m  

is the super-Gaussian parameter that decides the flatness of 

the pulse. With increasing value of m  the pulse gets flatter 

as well as pulse edge becomes steeper. Inserting this trial 

function in the Lagrangian eq.(4) and integrating over the 

entire time zone we get the total Lagrangian as:  
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where, jr  stands for the pulse parameters namely  

kTcPA ,,,, 0  and  . Variation with respect to these 

six parameters yields following six equations that show 

the evolution of the pulse parameters during 

propagation. 
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and 
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Here, )2)12((
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)( mm
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)25(
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m  . These equations are further solved to 

determine the pulse dynamics. Eq.(9) –(14) reduce to their 

unperturbed evolution equations by setting 0  .  

 

 

3. Results and discussions 
 
To achieve the stable solitonic pulse dynamics first we 

have to find the set of nontrivial stationary points. By setting 

left hand sides of eq. (9) – (14) to zero and solving the 

resultant equations one can get the set of stationary points. 

But, unlike unperturbed case explicit expressions of the 

stationary points in perturbed case are too tricky to 

determine due to the complex nature of the equations. 

Therefore, we find them graphically. For some given value 

of d,,   and  , we fix values of A  and k  to plot P  

versus c  curves for different m values. Any point on the 

curve ),( SS cP , in conjugation with the already fixed 

points, will be a set of stationary points. In Fig. 1 stationary 

points are plotted for two different strength of quintic 

nonlinearity for different value of super-Gaussian parameter 

m . The higher the value of m , the lower the value of SP  

for a given set of Sc  and . The behaviour of the stationary 

points is similar for different strength of quintic nonlinearity 
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)( . However, for a higher value of  ,  SP  will be 

smaller for a given value of Sc . This is more prominent 

at lower values of Sc . This way of finding stationary 

points is a privilege to experimentalist as with a given 

set of system parameter a large family of stationary 

points can be obtained using such plots for any given 

strength of nonlinearity. These stationary points from 

Fig. 1 are considered as the initial values of the 

corresponding parameters to solve the evolution 

equations of the pulse parameters, i.e., eq. (9)–(14) 

following Range-Kutta method. Fig. 2 (a) shows the 

variation of cAk ,,  and P  with propagation distance 

for 1m . k  remains constant throughout the 

propagation, while  cA,  and P  show an initial 

fluctuating region about their respective stationary 

values. Subsequently, the oscillations stabilize and 

steady state is achieved. The origin of the oscillatory 

initial phase is worthy to be found out. It is known that 

an incident pulse of other than the exact soliton shape 

transforms to the soliton shape while propagating. 

Variational method is believed to be unsuccessful to 

capture this transformation. In contrary, in Fig. 2 (a) the 

fluctuation seems to be the indication of the aforesaid 

shape changing of the pulse.  The role of phase plots in 

nonlinear dynamics is inevitable. They are very useful 

for determining the dynamical nature of the system as 

well as classifying the equilibrium points.  
 

 
Fig. 1. Behaviour of stationary points ),( SS cP  with 

m   as  a  parameter. 1A , 1d , 0k , 04.0   

         and 15.0 . (a) 1.0 . (b) 001.0 . 

 

 
Fig. 2. (a) Evolution of steady state solitonic pulse 

parameters after an initial fluctuation of those of a 

super-Gaussian ( 1m ) pulse, in presence of 

perturbation. (b)The phase plot corresponding to Fig. 

2(a) showing bound state propagation.   For  both   of   

the     figures    1A ,     1d ,   0k ,   04.0 ,               

                       15.0   and 001.0  

Here, phase plot corresponding to Fig. 2(a) has been 

depicted in Fig. 2(b). The phase trajectory is having counter 

clockwise spiral motion that finally ends at a point. This 

suggests stable focus, i.e., the bound state forming an 

attractor. Evolution of cAk ,,  and P  with propagation 

distance for 2m  and 3 have been depicted in Fig. 3(a) 

and Fig. 4(a) respectively. Corresponding phase plots are 

presented in Fig. 3(b) and Fig. 4(b) respectively. For both 

values of m  pulse parameters overcome the initial 

fluctuations to achieve a steady state. At this point it is 

worthy to clarify the difference between our results 

(presented in Fig. 2(a), 3(a) and 4(a)) and that demonstrated 

in ref [25]. In ref [25] stationary points are determined in 

absence of perturbation and hence the pulse parameters 

show steady state propagation. Then small arbitrary 

perturbation is added to the values corresponding to the 

stationary points and the pulse parameters started oscillating 

periodically around the stationary points. That means the use 

of perturbation is to establish the robustness of the system.  

 

 
Fig. 3. (a) Initial shape transforming fluctuation of super-

Gaussian ( 2m ) pulse parameters and subsequent steady 

state variation in presence of perturbation. (b) The phase 

plot corresponding to Fig. 3 (a) showing bound state 

propagation. The values of  ,,,, kdA  and   are same  

                                           as Fig. 2. 

 

But our present model manages to keep one step ahead 

by including meaningful dissipative terms as perturbation to 

acquire better insight of the system dynamics. This in turn 

enables the said model suitable for investigating dissipative 

solitons.   

We found stationary points, thanks to variational 

method, for the perturbed system itself. Consequently the 

pulse parameters in Fig. 2, 3 and 4 evolve to steady state 

after some initial shape changing turbulence. These self-

localized pulses can be referred as dissipative solitons. Point 

to be noted that although we used constant dispersion for 

plotting, our model contains a variable dispersion )(zd .  

Such dispersion map may be investigated elsewhere.  

To validate the analytical results a direct numerical 

solution of eq. (1) is in order now. We adopted split-step 

Fourier transformation method (SSFM) to solve eq. (1) with 

the analytically determined stationary points (from Fig. 1) as 

initial conditions. Fig. 5(a) shows the pulse evolution for 

1m . Corresponding contour plot is presented in Fig. 5 

(b). Both the plots show that after an initial shape adjustment 

the incident pulse quickly attains bell-shaped solitonic shape 

and then executes steady state propagation.   
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Fig. 4. (a) Initial shape transforming fluctuation of 

super-Gaussian pulse ( 3m )  and subsequent 

steady state variation in presence of perturbation. (b) 

The phase plot corresponding to Fig. 4(a) showing 

bound    state      propagation.       The       values     of  

          ,,,, kdA  and   are same as Fig. 2. 

 

 
 

Fig. 5. (a) Evolution of super-Gaussian pulse ( 1m ) 

to a bell-shaped dissipative soliton. The values of 

 ,,,, kdA  and   are in accordance with  those  

of   Fig. 2.  (b).  The   corresponding   contour   plot. 

 

 

 
 

Fig. 6. Generation of bell-shaped dissipative soliton 

with super-Gaussian ( 2m ) pulse. The values of 

 ,,,, kdA  and   are in accordance with those of  

                                        Fig. 3. 

 

 

Figs. 6 and 7 portray the evolution of high order 

super-Gaussian pulses (respectively for 2m and 3) 

under the effect of perturbation. Higher order super-

Gaussian pulses, which are of flat-top profiles, first 

transform to bell-shaped profile and thereafter propagate 

as steady state soliton. For a given value of d  greater 

  is required to achieve a stable soliton from higher order 

super-Gaussian pulse. This is reasonable as higher order 

pulse possesses more energy and hence requires more gain 

for soliton generation. The reshaping of incident pulse to a 

solitonic profile is accomplished by the radiation of excess 

energy, which is prominent for all three super-Gaussian 

case. The greater the super-Gaussian parameter, i.e., greater 

the difference with solitonic shape, the higher the radiation.  

Finally, both the analytical and numerical results 

qualitatively agree to the fact that super-Gaussian pulses, 

after an initial transition phase, are able to generate stable 

solitons. Importantly, variational method went above and 

beyond the usual results by capturing the initial shape 

transformation of super-Gaussian pulses. 

At this point perhaps it may not be irrelevant to discuss 

why the flat-top profile could not be preserved in an optical 

fiber. Getting soliton of super-Gaussian or flat-top profile is 

not very common. The geometry of bulk media plays a hand 

in achieving the flat-top soliton. One may get flat-top soliton 

by supplying huge nonlinear gain (e.g., cubic) and other 

dissipative terms in the system as in case of ref. [39, 40].  

Also flat-top soliton may be achieved in optical lattices by 

stabilizing multi-soliton complex [41], or by coherent pulse 

stacking in a multicrystal (10-crystal fan) birefringent filter 

[42]. A flat-top soliton can also be excited from cosh-

Gaussian beam, which is again combination of two 

decentered Gaussian beams, in defocusing quintic nonlinear 

media only at high power [43]. In optical fiber very strong 

dissipation and line gain may lead to flat-top profile [44]. In 

the references [39-44] the flat-top profile is obtained starting 

from some non-flat-top profile. Since our scheme does not 

involve a broad area or bulk device, doesn’t have nonlinear 

gain or very high dissipation term and we are not putting 

very high power in the fiber we should not be optimistic to 

get a flat-top soliton.  

Finally, the robustness of the dissipative solitons thus 

generated can be verified by setting initial conditions around 

the stationary values (given by Fig. 1). For the said case 

super-Gaussian pulses of all three orders evolve to 

periodically oscillating bell-shaped solitons. This is depicted 

in Fig. 8 for super-Gaussian pulse with 1m , 2 and 3.  

 

 
 

Fig. 7 Evolution of super-Gaussian pulse ( 3m ) and 

generation of a bell-spaped dissipative soliton. The values 

of  ,,,, kdA   and    are   in   accordance   with  those  

                                         of Fig. 4. 
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Fig. 8. Generation of periodically oscillating bell-

shaped solitons from super-Gaussian pulses. For (a) 

and (b) 1m , for (c) and(d) 2m , for (e) and(f) 

3m . Initial conditions are slightly different from the      

    steady state pulse parameters obtained from Fig. 1. 

 

 

4. Conclusion 

 
In this paper, we investigated the propagation of 

Super-Gaussian optical pulse and subsequent evolution 

of bell-shaped dissipative soliton in cubic-quintic 

(parabolic law) lossy medium in presence bandwidth 

limited amplification due to frequency-selective 

feedback. Variational method in conjugation with 

Rayleigh dissipative function is used to derive a set of 

evolution equations of pulse parameters. The condition 

of steady state solitonic pulse propagation is derived. A 

large family of system parameters has been identified 

that promises stable dissipative soliton. SSFM based 

numerical experiments are performed with super-

Gaussian optical pulses. Both the analytical and 

numerical results show that initially there are some 

shape transforming fluctuations in pulse parameters and 

then the pulses evolve as stable dissipative solitons. 

Although, higher order super-Gaussian pulses do not 

preserve their characteristic flat-top profile, they evolve 

as bell-shaped dissipative soliton. Therefore, a solitonic 

pulse can be achieved in dissipative media from pulses 

having flat-top or other steep edged profiles, e.g., 

radiation from directly modulated laser diodes that is 

commonly used in fiber optic communication systems. 

The result can be used in data communications, all-

optical switching, and signal processing. 

 

 

Acknowledgement 

 
Baldeep Kaur would like to acknowledge the 

financial support of UGC, Govt. of India, through UGC 

Meritorious Scholarship. Gurkirpal Singh Parmar would 

like to acknowledge TEQUIP for financial assistance. 

The research work of last two authors (Anjan Biswas 

and Milivoj Belic) was funded by Qatar National 

Research Fund (QNRF) under grant number NPRP 6-

021-1-005. The authors also declare that there is no conflict 

of interest.  

 
 
References 

 

  [1] A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142  

        (1973). 

  [2] L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev.    

        Lett. 45, 1095 (1980). 

  [3] G. P. Agrawal, Nonlinear Fibre Optics 3rd edn,  

        Academic press: Berlin (2011). 

  [4] N. Akhmediev, A. Ankiewicz, Dissipative Solitons,  

        Springer, Berlin, (2005). 

  [5] P. Lazaridis, G. Debarge, P. Gallion, Opt. Lett. 20, 1160  

        (1995). 

  [6] T. Kacmarek, Mod. Probl. of Radio Eng., Telecommun.  

        and Computer Sci.: Proceedings of the International  

        Conference, 105, (2004). 

  [7] S. Konar, S. Jana, Opt. Commun. 236, 7 (2004). 

  [8] E. Palushani, L. K. Oxenløwe, M. Galili, H. C. Mulvad,  

        A. T. Clausen, P. Jeppesen, IEEE J. of Quant. Electron.  

        45, 1317 (2009), 

  [9] D. Anderson, M. Lisak, Opt. Lett. 11, 569 (1986). 

[10] R. A. Linke, IEEE J. Quant. Electron. 21, 593 (1985). 

[11] G. P. Agrawal, M. J. Potasek, Opt. Lett. 11, 318 (1986). 

[12] M. Singh, A. K. Sharma, R. S. Kaler, Optik, 121, 609  

        (2010). 

[13] Y. H. Chuang, L. Zheng, D. D. Meyerhofer, IEEE J of  

        Quant. Electron. 29, 270 (1993). 

[14] S. S. Bulanov, A. Brantov, V. Y. Bychenkov, V.  

        Chvykov, G. Kalinchenko, T. Matsuoka, P. Rousseau,  

        S. Reed, V. Yanovsky, D. W. Litzenberg, K.  

        Krushelnick, A. Maksimchuk, Phys. Rev. E 78, 026412  

        (2008). 

[15] G. M´echain, A. Couairon, Y. B. Andr´e, C. D’amico,  

        M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, R.  

        Sauerbrey, Appl. Phys. B 79, 379 (2004). 

[16] R. Pant, M. D. Stenner, M. A. Neifeld, D. J. Gauthier,  

        Opt. Express 16, 2764 (2008). 

[17] B. J. Eggleton, G. Lenz, N. Litchinitser, D. B.   

        Patterson, R. E. Slusher, IEEE Photon. Technol. Lett. 9,  

        1403 (1997). 

[18] P. Roussignol, D. Ricard, J. Lukasik, C. Flytzanis, J.  

        Opt. Soc. Am. B 4, 5 (1987). 

[19] J. Coutaz, M. Kull, J. Opt. Soc. Am. B 8, 95 (1991). 

[20] J. Soneson, A. Peleg, D. Physica, Nonlinear Phenomena  

        195, 123 (2004). 

[21] S. Konar, S. Jana, Phys. Scr. 71, 198 (2005). 

[22] G. Xia, Z. Wu, J. Wu, Chin. J. Phys. 41, 116 (2003). 

[23] L. Miao, X. Xu-ming, Y. Chun-yun, Y. Tao, Chin. J.   

        Quantum Electron. 28, 369 (2011). 

[24] A. Biswas, Fiber and Integr. Opt 21, 115 (2002). 

[25] Shwetanshumala, A. Biswas, S. Konar, J. Electromagn.  

        Waves Appl. 20, 901 (2006). 

[26] R. Kohl, D. Milovic, E. Zerrad, A. Biswas,  

        Mathematical and Computer Modelling 49, 1700  

        (2009). 

[27] A. Biswas, J. Opt. A 4, 84 (2002). 

[28] P. Green, D. Milovic, A. K. Sarma, D. A. Lott, A.  

http://link.aip.org/link/?APPLAB/23/142/1
http://prola.aps.org/abstract/PRL/v45/i13/p1095_1
http://prola.aps.org/abstract/PRL/v45/i13/p1095_1
http://www.sciencedirect.com/science/journal/01672789/195/1


150                             Soumendu Jana, Shivani, Gurkirpal Singh Parmar, Baldeep Kaur, Qin Zhou, Anjan Biswas, Milivoj Belic 

 

       Biswas, J. Nonlin. Opt. Phys. Materials 19, 339  

       (2011). 

[29] A. H. Bhrawy, M. A. Abdelkawy, A. Biswas, Optik  

       125, 1537 (2014). 

[30] A. H. Bhrawy, A. A. Alshaery, E. M. Hilal M.  

       Savescu, D. Milovic, K. R. Khan, M. F. Mahmood,  

       Z. Jovanoski, A. Biswas, Optik 125, 4935 (2014). 

[31] A. H. Bhrawy, A. A. Alshaery, E. M. Hilal, K. R.  

        Khan, M. F. Mahmood, A. Biswas, Optik 125,  

        4945 (2014). 

[32] A. A. Alshaery, A. H. Bhrawy, E. M. Hilal, A. J.  

        Biswas, Electromag. Waves and Applic. 28, 275  

        (2014). 

[33] A. H. Bhrawy, A. A. Alshaery, E. M. Hilal, D.  

        Milovic, L. Moraru, M. Savescu, A. Biswas, Proc.  

        Roman. Acad. 15, 235 (2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[34] C. De Angelis,  IEEE J. Quant. Elect. 30, 818  

        (1994). 

[35] A. Biswas, A. B. Aceves, J. Mod. Opt. 48, 1135  

        (2001). 

[36] A. Hasegawa, Pramana 57, 1097 (2001). 

[37] D. Anderson, Phys. Rev. A 27, 3135 (1983). 

[38] Kh. I. Pushkarov, D. I. Pushkarov, I. V. Tomov,  

        Opt. Quant. Electr. 11, 471 (1979). 

[39] P. Grelu, N. Akhmediev, Nat. Photon. 6, 1 (2012). 

[40] L. C. Crasovan, B. A. Malomed, D. Mihalache,  

        Phys. Lett.  A 289, 59 (2001). 

[41] T. J. Alexander, Y. S. Kivshar, Appl. Phys. B 82,  

        203 (2006). 

[42] I. Will, G. Klemz, Opt. Exp. 16, 14922 (2008). 

[43] S. Konar, M. Mishra, S. Jana, Phys. Lett. A 362,  

        505 (2007). 

[44] X. Liu, Opt. Exp. 19, 5874 (2011). 

 
 

___________________ 
*Corresponding author: soumendujana@yahoo.com 

 

mailto:soumendujana@yahoo.com

